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Warm Up 

•  Generated room pictures by WGAN-GP 

•  Face-off by CycleGAN 



Generative Adversarial Networks 
•  Aim to generate fake data that looks like real data. 
•  Generator and Discriminator play an adversarial game 
–  Generator tries to generate data that can fool the 

Discriminator, while Discriminator tries to distinguish 
between real data and generated data. 

•  Turing test 
–  Test whether a machine can perform indistinguishably from 

a human. 
•  Nash Equilibrium 
–  Every player reaches the best strategy as long as other 

players’ decisions remain unchanged. 



Generative Adversarial Networks 

•  Original formulation 



Saddle Point Optimization 

•  Convex optimization v.s. saddle point optimization 
–  Convex: descending along the gradient with reasonable 

learning rate guarantees global optimum 
–  Saddle: the optimal point is fragile and hard to reach 



Saddle Point Optimization 

•  Hard to converge with gradient descent. 

–  Initialize x = 1, y = 2. Same learning rate with Gradient 
Descent, Adam and RMSProp. Only RMSProp converges. 



Vanishing Gradient 

•  When real, fake distributions hardly overlaps, it is easy to 
distinguish them. When D is optimal, the gradient of G 
vanishes. 

•  Denote the optimal Discriminator with D*. 
when                       , the gradient of G 

 
 
–  In the beginning of training, generated samples are easy to 

distinguish. 
–  Discriminator: good one or bad one? 



Alternative objective for Generator 
•  Original 
•  Alternative 

–  Alleviates the problem of gradient vanishing, but brings out new 
problems. 

–  Equivalent to 
•  Problems 

–  KL – 2JSD ? 
–  Mode collapse: due to the asymmetric nature of KL-Divergence, the 

generation results of different latent codes are almost identical. 

–  Instability of gradients: gradient is a centered Cauchy distribution with 
infinite expectation and variance 



Wasserstein Distance 

•  Minimum cost of tuning a distribution to another 



Wasserstein Distance 

•  Definition 

– d(x, y): distance from x to y 
– dγ(x, y): mass moved from x to y 

•  Measures the distance between two 
distributions. p=1 leads to Earth Mover’s 
Distance (Optimal Transport). 



Distance Metrics for Distribution 

•  Total Variation distance 

•  Kullback–Leibler divergence 

•  Jensen–Shannon divergence 

•  Wasserstein distance 



Problem with Non-overlap Distributions 
Consider two distributions: with z sampled 
from uniform distribution U[0, 1], one 
distribution is (0, z), and the other is (θ, z).  
Use a distance metric to measure the 
distance 
 
 
 
 
 
 
 
 
 
*Recall the Vanishing Gradient problem.  



Wasserstein Distance 

•  Intractable: hard to exhaust all joint 
distributions.  
– Many approximations (papers). 

•  Kantorovich-Rubinstein Duality 

–  f : all functions satisfying 1-Lipschitz continuity. 
– Equivalent to deal with K-Lipschitz restriction. 

•  derivatives are bounded 



Wasserstein GAN 

① Approximate Wasserstein distance with 
neural networks 

– Weight clipping to enforce Lipschitz continuity 
(bound derivatives of x) 

② Minimize the approximated distance 

    ignored 



Wasserstein GAN 

•  Samples are mapped to a scalar, 1-D latent space. 
•  “Discriminator” is instead called “Critic” 
–  No longer used to classify, but provides distance feedback 

•  Code changes compared to GAN: 
–  Remove the last classification layer 
–  Weight clipping 

•  Problem: terrible way to enforce Lipschitz Continuity 
with gradient clipping 
–  Refer to WGAN-GP (Gradient Penalty) for more details 



Wasserstein Auto-Encoder 

•  WGAN: distribution distance is measured in 
the sample level. 

•  Move the distribution distance measuring to 
the latent code level è WAE 

•  Refer to WASSERSTEIN AUTO-ENCODERS 
for more details. 



Adversarial Loss 

•  A popular module in 
transfer learning tasks 
to learn shared 
representation between 
source domain and 
target domain. 



Adversarial Loss Design 1 

•  Add the following negative entropy term to the 
objective and jointly optimize 

 
•  Many problems. List some: 
–  p = 0.5 for both s and t can achieve optimal loss 

•  A poor Discriminator, such as θ = 0 
•  A poor shared representation, such as w = 0 

–  both can lead to optimal loss, but no prevention in the 
designed objective. 



Adversarial Loss Design 2 
•  Add the cross entropy term as a min-max game 

•  Balance sample numbers in S, T and reformulate 

–  D, g share same status 
•  D: for x in S, D(g(x)) è 1; for x in T, D(g(x)) è 0 
•  g : for x in S, D(g(x)) è 0; for x in T, D(g(x)) è 1 

•  Ideal equilibrium: x from S and T are indistinguishable,  
D(g(x)) è 0.5 
–  Can this objective achieve this equilibrium? 

 



Adversarial Loss Design 2 
 

•  Apply chain rule and see what happens to 
gradient 
– Dθ 
– gw 

•  D(g(x)) = ps(x) /(ps(x) + pt(x)) converges for 
both θ, w 
– When D(g(x)) outputs correct domain label, both 

D, g converge. 



Adversarial Loss Design 3 

•  Hybrid solution: entropy & cross entropy 

 
– Dθ  

– gw 
 



Adversarial Loss Design 4 
•  Apply Discriminator on both shared and specific 

representation 

–  fs, ft: specific network in source, target domain 
–  g: shared network in both domains 

•  Possibly better than the previous design, but requires 
specific representation 



Adversarial Loss Design 5 
•  Shared representation should be both indistinguishable and 

meaningful 
–  Use Wasserstein distance to pull close shared representations 
–  Add a task on the shared representations to enrich content 
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